association between sub-maximal and maximal measures of aerobic power in female adolescents

*Dr/ sanabel b h khalaf

**Dr/ sahar m a ahmed

^{**}Dr/ hana abdallah elmarzouq

Introduction

While higher spectrum is associated with wellbeing many national and international organizations that focus on health. e.g. the American College of Sports Medicine (Ehrman, 2010) and the World Organization (World Health Organization, Health 2010), exercise recommend interventions targeting CRP. this health-related Because fitness parameter must monitored periodically evaluate its progress, appropriate should be tests applied. Consequently, the lower spectrum of cardiorespiratory power (CRP) is associated with heart and pulmonary diseases (chronic obstructive pulmonary disease, coronary heart disease, chronic heart failure, and intermittent claudication) (Pedersen Saltin. 2006). its higher spectrum is linked not only to

the absence of the aforementioned diseases. but also to wellbeing. Maximal uptake, oxygen i.e.. the maximal quantity of oxygen received by human through the respiratory system and transferred from lungs to tissues through the cardiovascular system where it is consumed, is regarded as the gold standard in the assessment of CRP.

Nonetheless, the need for expensive equipment, a well-trained staff, and maximal effort that reaches exhaustion from participants raises the question for the usage of alternative assessment methods. It is thought that submaximal measures overcome certain limitations connected with maximal testing (Noonan and Dean, 2000); they are easier to administer. less expensive, and they demand

Assiut Journal For Sport Science Arts

assistant professor (kuwait).

assistant professor (egypt).

assistant professor(kuwait) physical education department college of basic education.

much less effort from participants. Physical working capacity at a heart rate (HR) of 170 beats per minute (PWC₁₇₀) is a sub-maximal test, which is performed on a cvcle ergometer. The test evaluates the power corresponding to HR 170 beats per minute (bpm), i.e. the higher the PWC170, the higher the CRP. The YMCA Step Test estimates the HR during the first minute recovery after 3 minutes of stepping up and down, i.e. the lower the heart rate, the higher the CRP. In addition to the recording of the recovery HR, the HR at the end of the 3minute step test can be used as an index of CRP, too. To apply such measures in different populations, two parameters should be chiefly considered, validity and reliability. Validity is the degree to which a test measures what it purports to measure, while reliability is its characteristic to yield the same results on successive trials (Thomas et al, 2011). The validity of PWC₁₇₀ was already examined in 12-year-old non-Caucasian females against VO2_{max} (Mahoney, 1992) and 15.6-year-old Caucasian female adolescents (Boreham al. 1990). Additional et

relevant research conducted on schoolchildren did not discriminate between girls and boys and was excluded from further analysis (Buono et al, 1991).

Two null hypotheses were examined: first, that there agreement between testretest of sub-maximal measures with interval of a week (reliability) and second, that there was no association indices ofsubbetween maximal measures and VO2_{max} (validity). Nevertheless, aim of the study was not only to reject the null hypotheses and adopt their alternative, but to also achieve proper levels of affinity ofthe above parameters in order to ground validity and reliability in light of minimal values suggested by previous research (Badland and Schofield, 2006, Baranowski and de Moor, 2000, Kurtze et 2007). Particularly. acceptable level of intraclass correlation coefficient was proposed to be higher than 0.61 (Badland and Schofield 2006, Baranowski and deMoor. 2000). At least moderate (0.30 < r < 0.50) correlates with the criterion measures were suggested lead to the to

validation of an instrument (Kurtze et al, 2007).

Aim of Work

 T_{Ω} examine the association between two submaximal (physical working capacity at a heart rate of 170 (PWC₁₇₀) on cycle ergometer test and YMCA Step Test) and maximal measures (maximal oxygen uptake (VO2_{max}) of aerobic power, as well as to study the repeatability of the aforementioned sub-maximal measures in physically active female adolescents.

Material and Methods

Participants and Procedures. Ten female adolescents, aged 13.4 ± 0.7 years old, all members of a local track and field Ahly club, volunteered for this study. They visited our laboratory twice, with an interval of a week, they were informed of the protocols, and their parents provided oral informed consent. During their first visit, body composition, resting heart blood pressure, and anthropometric data obtained followed by a guided 15-minute warm-up (Table 1). physical working Then. capacity at a heart rate of 170 (PWC₁₇₀) and the step test were performed.

During their second visit, the same procedures were repeated and, additionally, after a 15- minute break, a graded exercise test was performed.

Protocols Equipments. Height and body mass were measured using an InBody an electronic scale. PWC₁₇₀ was performed according to Eurofit guidelines (Eurofit, 1988). YMCA Step Test was performed in a 0.3 m height step for 3 minutes using a 24 ascent/ min cadence (Golding, 2000). Α graded exercise test on a cvcle ergometer (Ergomedics 828. Monark, Sweden), in which the initial workload was 1.5 W/kg, and was increased by 20 W every minute until exhaustion (Heller, 2005), was performed. Minute ventilation and oxygen uptake were recorded by a gas analyzer (Fitmate Pro, Cosmed, Italy). Anaerobic threshold was identified from ventilatory threshold, i.e. the relationship between minute ventilation and oxygen uptake. During test a cadence of 80 revolutions per minute was maintained through two means: visual contact with the monitor embodied in the cycle reporting cadence and the audio signal from a metronome set at 80 beats per minute. The duration of every flywheel revolution in cycle ergometer tests was measured with the help of electronic sensors; the power output of every revolution was computed by specialized software (Papadopoulos et al, 2009).

Blood samples were taken 5 minutes after termination of test, and lactate concentration was analyzed. Lactate concentration was employed as a criterion of $VO2_{max}$ achievement (accepted values > 9 mmol/L).

Predicted maximal heart rate was calculated by the formula $HR_{max,predicted} = 208$ - 0.7 °— age (Tanaka et al, 2001) and it was employed as a criterion of $VO2_{max}$ achievement, as well as an index of motivation level.

Statistical procedures and data analysis. All data were presented as mean ± standard deviation. Data sets were checked for normality Shapiro-Wilk using the and visual normality test inspection. Student pair t test was employed to compare values between trials. Pearson product moment correlation coefficient (r) was used to examine the association between VO2_{max}, PWC₁₇₀, and

step test and therefore to ground the validity of submaximal measures. Intraclass correlation coefficient (ICC) was employed to examine the reliability of sub-maximal measures outcome and it was expressed in 95% lower and upper bounds of confidence intervals (CI). Student t test was employed to examine the trials. between differences Significance level was set at P = 0.05. Statistical analyses were performed using SPSS version17.0.

Results

During the second visit to the laboratory, all submaximal indices improved, either significantly (PWC₁₇₀ t10 = 2.55, p = 0.03; PWC₁₇₀ expressed in relative to body mass values, rPWC₁₇₀, t10 =2.62, p = 0.03) or nonsignificantly (HR at the end of step test t10 = 0.41, p = 0.69; recovery HR after step test t10 = 1.75, p = 0.11). With the exception of systolic arterial pressure (BP_s t=-2.71, p = 0.02), diastolic pressure and resting heart rate similar (BP_d t $= 0.31, p = 0.76; HR_{rest} t =$ 0.73, p = 0.48). Considering the reliability of sub-maximal measures of CRP, ICC was 0.89 (95% CI 0.55- 0.97) in PWC₁₇₀ and 0.91 (95% CI 0.65-0.98) in rPWC₁₇₀, while it was 0.69 (95% CI -0.27-0.92) at the end of step test and .0.78

(95% CI 0.11-0.95) at the end of the first minute of recovery after step test (Table 2).

 $Table \ (1)$ Mean values ($\pm SD$) of cardiorespiratory parameters of participants (n = 10)

Variable	Pre	Post	cardiorespiratory
BP _s (mmHg)	122.9 ± 9.1	112.7 ±	0.751
		11.9*	
BP_d (mmHg)	60.8 ± 9.0	60± 8.1	0.711
HR _{rest} (bpm)	79.8 ± 12.3	77.4 ± 10.4	0.820
Step test ₀ (bpm)	$158.9 \pm$	157 ± 14.7	0765
	16.6		
Step test ₁ (bpm)	$106.7 \pm$	97.4± 16.8	0.732
	22.1		
$PWC_{170}(W)$	$87.00 \pm$	13.06±	0.754
	23.97	16.21*	
$rPWC_{170}$ (W/kg)	1.81 ± 0.51	1.56 ±	0.755
		0.30*	
	Post		
VO2 _{max} (mL/min/kg)	36.80 ± 5.09		
Ve (L/min)	59.43 ± 10.64		
HR _{max} (bpm)	195.0 ± 10.5		
HR _{thr} (bpm)	160.6 ± 10.9		
Lactate (mmol/L)	10.0 ± 3.1		
HR _{max,pred} (bpm)	198.6 ± 0.5		
HR _{max} /HR _{max,pred} %	98.2 ± 5.2		

Legend: BP_s – Systolic blood pressure; BP_d – Diastolic blood pressure; HR_{rest} – Heart rate in rest; Step test₀ – Heart rate at the end of step test; Step test₁ – Heart rate at the first minute of recovery after step test; PWC_{170} – Physical

working capacity in heart rate 170 beats per minute; rPWC₁₇₀ – PWC₁₇₀ relative to body mass; Ve – Pulmonary ventilation; HR_{max} – Maximal heart rate; HR_{thr} – Heart rate at anaerobic threshold; HR_{max,pred}

Assiut Journal For Sport Science Arts

- Maximal heart rate predicted from age; *p<0.05.

Heart rate at the end of graded exercise test reached over 98% of predicted value based on age, and lactate levels were in accepted levels. Therefore, end values of this test were considered maximal. PWC₁₇₀ was associated significantly with VO2_{max} in absolute values (r = 0.65, p =0.04), but not with $VO2_{max}$ in relative to body mass values (r = 0.44, p = 0.20). corresponding relationships between rPWC₁₇₀ and VO2_{max} were r = .39 (p = 0.27) and r =0.60 (p = 0.06). Heart rate at the end of the step test was non-significantly related $VO2_{max}$ in both absolute and relative values (r = -0.53, p =0.12 and r = -0.61, p = 0.06), whereas respective values of heart rate at the end of the first minute after step test were r = -0.72 (p = 0.02) and r = -0.69 (p= 0.03).

Discussion

It was examined whether the findings between trials. separated week. by one **Participants** differed? had better performance in all submaximal CRP indices during trial. the second This improvement either was

statistically significant (PWC₁₇₀ test) or nonsignificant (step test). Difficulty in pedaling at the cadence and required HR elevation from anxiety were mentioned previously potential reasons for the discrepancy between maximal test and cycle ergometer based measures on HR (Mahoney, 1992). However. adolescents were more accustomed cycling and to possessed a better sense of rhythm. Thus, it was proposed that the explanation for the lower HR responses to the same workloads during the second trial were attributed to both learning effect lowered anxiety, and not to improvement of Consequently, these measures were acceptable to be applied in a sample of female adolescents to be tested once. However, if the purpose was to follow CRP longitudinally, a familiarization session was recommended.

The reliability of step test and physical working capacity at a heart rate of 170 bpm and their validity against VO2_{max} were also examined. ICC reached such levels in all sub-maximal indices, which

grounded their reliability regarding desirable levels (> 0.61) (Badland and Schofield, 2006). Baranowski and Moor, 2000). Higher scores of ICC were observed in absolute and relative PWC₁₇₀ than in step test, suggesting PWC₁₇₀ to be more reliable than step test. Correlation between measures and VO2_{max} ranged between 0.39 and 0.65, and in agreement with were suggested levels (at least 0.30 < r < 0.50 correlates with the criterion measures) (Kurtze et al. 2007). Similar association between PWC₁₇₀ and VO2_{max}, estimated by graded exercise test in treadmill, was observed non-Caucasian female in children (r = 0.54, n.s.; N = 8, aged 12 years, VO2peak 38.5 ± 4.4 mL/min/kg, PWC170 1.35 0.42 W/kg(Mahoney, 1992), and higher in Caucasian female adolescents (r = 0.84, p < 0.05; N = 18, aged 15.4 ± 0.7 years, $VO2_{max}$ 42.6 ± mL/min/kg, PWC_{170} 1.86 \pm 0.39 W/kg) (Boreham et al. 1990).

PWC₁₇₀ and YMCA step test proved to be valid and reliable assessment methods of CRP in female adolescents, and they were recommended for further use. Recent findings,

which revealed a decrease in CRP of girls during the last two decades, highlighted the need for monitoring using this physical fitness parameter (Saczuk and Wasiluk 2010). CRP was inversely associated with BMI, it was lower in children and adolescents with higher BMI (Aires et al, 2010-Dumith et al,2010), Dwyer et al,2009, Huang and Malina, 2010), and it was in close relationship with the consisting parameters the pediatric metabolic syndrome (Brambilla and Pietrobelli. 2009). Increased risk for cardiovascular disease was found among adolescents with low CRP (Lobelo et al., 2010). Children with chronic diseases had lower CRP than healthy controls (Maggio et al, 2010). Regarding the prevalence of inactivity (Nikolaidis, 2009) and obesity (Nikolaidis, 2010, Nikolaidis. 2011), particular levels of physical activity should be attained in order to have healthy CRP (Martinez, et 2010). Therefore, development of sub-maximal measures that are easy to be administered with low cost to large numbers of participants without demanding maximal effort, might contribute

better screening of CRP. especially in the context of its inverse association with many diseases. Since it has been shown that the level of exercise participation (Nikolaidis, 2011) and the response to exercise intervention is influenced partially (approximately 50%) by heredity (Bouchard et al, 1999), the effectiveness of an exercise intervention should be monitored periodically, where sub-maximal measures proved valid reliable be and important assessment tool.

The number of participants in our study (n = 10) presents a limitation of our findings. This drawback has already been identified in previous relevant studies (n = 18, aged 15.4years, (Boreham, et al, 1990); n = 9, aged 12 years, (Mahoney, 1992). It could be partially attributed to the inherent of limitations laboratory exercise testing, especially in child and adolescent populations.

Conclusions

- 1. Both the 170 capacity test and the step test have proved to be reliable and consistent for physically active female adolescents.
- 2 There is a relationship between the maximum and

minimum capacity of the air force of female adolescents.

Recommendations

- 1- We encourage the widespread use of cardiovascular testing.
- Familiarity with the testing procedures must be confirmed to minimize the height of the heartbeat due to anxiety.
- 2- To benefit from the results of the research in assessing the maximum and minimum level of air power in adolescent females.

References

- 1- Aires L, Silva P, Silva G, Santos M, Ribeiro J and Mota J (2010): Intensity of physical activity, cardiorespiratory fitness and body mass index in youth. J. Phys. Act. Health; 7: 54-59.
- **2- Badland H and Schofield G** (2006): Test-retest reliability of a survey to measure transport-related physical activity in adults. Res. Q. Exerc. Sport; 77: 386-390.
- **3- Baranowski T and de Moor C (2000):** How many days was that? Intra-individual variability and physical activity assessment. Res. Q. Exerc. Sport; 71: S74-S78.
- **4- Boreham C, Paliczka V** and Nichols A (1990): A comparison of PWC170 and

- 20-MST tests of aerobic fitness in adolescent schoolchildren. J. Sports Med. Phys. Fitness; 30 (1): 19-23.
- 5- Buono M, Roby J, Micale F, Sallis J, Shepard W (1991): Validity and reliability of predicting maximum oxygen uptake via field tests in children and adolescents. Pediatr. Exerc. Sci; 3: 250-255.
- 6- Bouchard C, Ann P, Rice T, Skinner J, Wilmore J, Gagnon J, Perusse L, Leon A, Rao D (1999): Familial aggregation of VO2_{max} response to exercise training: results from the HERITAGE family study. J. Appl. Physiol; 87(3): 1003-1008.
- 7- Brambilla P and Pietrobelli A (2009): Behind and beyond the pediatric metabolic syndrome. Italian J. Pediatrics; 35: 41.
- 8- Dumith S, Ramires W, Souza M, Moraes D, Petry F, Oliveira E, Ramires S, Hallal P (2010): Overweight/ obesity and physical fitness among children and adolescents. J. Phys. Act. Health; 7(5): 641-648.
- 9- Dwyer T, Magnussen C, Schmidt M, Ukoumunne O, Ponsonby A, Raitakari O, Zimmet P, Blair S, Thomson R, Cleland V, Venn A (2009):

- Decline in physical fitness form childhood to adulthood associated with increased obesity and insulin resistance in adults. Diabetes Care; 32(4): 683-687.
- **10- Ehrman J (2010):** ACSM resource manual guidelines for exercise test and prescription. Baltimore: Lippincott Williams & Wilkins, 6th ed.
- 11-Eurofit (1988):The Eurofit of European test physical fitness tests. Strasbourg: Council of Europe. 12- Golding L (2000): YMCA fitness testing and assessment manual, 4th ed. Champaign: Human Kinetics.
- **13- Heller J** (2005): Laboratory manual for human and exercise physiology. Charles University in Prague: The Karolinum Press.
- **14- Huang Y and Malina R** (2010): Body mass index and individual physical fitness tests in Taiwanese youth aged 9-18 years. Int. J. Pediatr. Obes; 5 (5): 404-411.
- **15- Lobelo F, Pate R, Dowda M, Liese A, Daniels S (2010):** Cardiorespiratory fitness and clustered cardiovascular disease risk in US adolescents. J. Adolesc. Health; 47(4): 352-359.

- 16- Kurtze N, Rangul V, Hustvedt B, Flanders W (2007): Reliability and validity of self-reported physical activity in the Nord-Trondelag Health Study. Eur J Epidemiol; 22: 379-87.
- 17- Maggio A, Hofer Μ. Martin Χ, Marchand L. **Beghetti** M, **Farpour** N physical (2010): Reduced activity level and cardiorespiratory fitness in children with chronic diseases. Eur. J. Pediatr; 169(10): 1187-1197.
- **18- Mahoney C (1992)**: 20-MST and PWC170 in non-Caucasian children in the UK. Br. J. Sports Med; 26(1): 45-47.
- 19- Martinez D, Ruiz J, Ortega F, Casajus J, Veiga O, Widhalm K, Manios Y, **Beghin** L, Gonzalez Μ. Kafatos A, Espana V, Molnar D, Moreno L, Marcos Castillo M, Sjostrom (2010): Recommended levels and intensities of physical activity avoid to cardiorespiratory fitness in adolescents: European the Helena study. Am. J. Hum. Biol; 22(6): 750-756.
- **20- Nikolaidis P** (2009): Inactivity, nutritional and lifestyle habits: a cross-

- sectional study in Czech schoolchildren and their nuclear families. Facta. Univ. Phys. Edu. Sport; 7(2): 141-151.
- 21- Nikolaidis, P (2010): Obesity and sport in childhood a case of a track and field club. Acta Facultatis Educationis Physicae Universitatis Comenianae; 50(1): 49-54.
- Nikolaidis P. 22-(2011): aggregation Familial and heritability of maximal exercise participation: A crosssectional study in schoolchildren & their nuclear families. Sci. Sport; 26(3): 157-165.
- 23- Nikolaidis, P (2011): Overweight and obesity in male adolescent soccer players. Minerva Pediatr.; 63(6) in print.
- **24-** Noonan V and Dean E (2000): Sub-maximal exercise testing: clinical application and interpretation. Phys. Ther; 80: 782-807.
- 25- Papadopoulos V, Kefala I, Nikolaidis P (2009): Mechatronic and software development of Wingate test. In: Papadopoulos C., Starosta W. (eds). Proceedings of 11th International Conference of

Sport Kinetics, 25-27 September, Kallithea, Chalkidiki, Greece.

26- Parizkova J (**1978**): Lean body mass and depot fat during autogenesis in humans. In: Parizkova J. Rogozkin V. (eds) Nutrition, Physical Fitness and Health: International Series on Sport Sciences, Baltimore, MA: University Park Press, pp. 22.

27- Pedersen B and Saltin B (2006): Evidence for prescribing exercise as therapy in chronic disease. Scand J. Med. Sci. Sports; 16(S1): 3-63.

28- Saczuk J and Wasiluk A (2010): Changes in the somatic

and fitness variables in girls over two decades. Biomed. Hum. Kinetics; 2: 10-105.

29- Tanaka H, Monahan K, Douglas R, Seals R (2001): Age predicted maximal heart rate revisited. J. Am. Coll. Cardiol; 37: 153-156.

30- Thomas J, Nelson J, Silverman S (2011): Research methods in physical activity. Champaign: Human Kinetics, 6th ed.

31- World Health Organization (**2010**): Global recommendations on physical activity for health. Geneva: WHO Press.